NMOS examples

For the circuit shown, use the the NMOS equations to find i_D and v_{DS} .

For the NMOS, $V_T = 1.5$ V and K = 0.5 mA/V².

$$v_{GS} = V_G = 4 \text{ V} \rightarrow \text{the NMOS is on}$$

Assume that the transistor is in saturation.

$$i_D = K (v_{GS} - V_T)^2 = (0.5 \text{mA}/\text{V}^2) [4\text{V} - 1.5\text{V}]^2 = 3.125 \text{mA}$$

 $v_{DS} = V_{DD} - i_D R_D = 10 V - (3.125 mA) (2 k\Omega) = 3.75 V$

 $v_{GS} - V_T = 4 \text{ V} - 1.5 \text{ V} = 2.5 \text{ V}$

 $v_{DS} > v_{GS} - V_T \rightarrow$ saturation confirmed. Q.E.D.

For the circuit shown, use the the NMOS equations to find i_D and v_{DS} .

For the NMOS, $V_T = 1.0$ V and K = 0.5 mA/V².

Since $V_G > V_T \rightarrow$ the NMOS is on.

Guess that the transistor is in saturation.

 $i_D = K \left(v_{GS} - V_T \right)^2$

$$v_{GS} = V_G - i_S R_S$$
 (and $i_S = i_D$, as always for a FET)

 $i_D = K \left(V_G - i_D R_S - V_T \right)^2$

$$= K \left[R_{S}^{2} i_{D}^{2} - 2 \left(V_{G} - V_{T} \right) R_{S} i_{D} + \left(V_{G} - V_{T} \right)^{2} \right]$$

Re-arranging:

$$i_D^2 - \left[\frac{1}{KR_S^2} + 2\left(\frac{V_G - V_T}{R_S}\right)\right]i_D + \left[\frac{V_G - V_T}{R_S}\right]^2 = 0$$

EE 230

$$i_D^2 - \left[\frac{1}{KR_S^2} + 2\left(\frac{V_G - V_T}{R_S}\right)\right]i_D + \left[\frac{V_G - V_T}{R_S}\right]^2 = 0$$

Plug in the numbers:

$$i_D^2 - [10 \text{ mA}] i_D + [9 \text{ mA}^2] = 0$$

Use the quadratic equation:

$$i_D = 9$$
 mA or $i_D = 1$ mA.

Which is right? Check the v_{GS} for both.

If $i_D = 9 \text{ mA}$, $v_{GS} = V_G - i_D R_S = 4 \text{ V} - 9 \text{ V} = -5 \text{ V}$. No way! The NMOS would not be on in that case. This root cannot be correct.

If
$$i_D = 1$$
 mA, $v_{GS} = V_G - i_D R_S = 4$ V– 1 V = 3 V. OK, this is consistent.

Finally, $v_{GS} - V_T = V_G - i_D R_S - V_T = 2 V$, and $v_{DS} = V_{DD} - i_D R_D - i_D R_S = 7 V$.

 $v_{DS} > v_{GS} - V_T \rightarrow$ saturation confirmed.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = -\frac{b}{2} \pm \sqrt{\left(\frac{b}{2}\right)^2 - c}$$

or, if
$$a = 1$$

$$x = -\frac{b}{2} \pm \sqrt{\left(\frac{b}{2}\right)^2} - \frac{b}{2} = -\frac{b}{2} + \frac{b}{2} + \frac{b}{2} + \frac{b}{2} = -\frac{b}{2} + \frac{b}{2} + \frac{b}$$

• (

For the circuit shown, use the the NMOS equations to find i_D and v_{DS} .

For the NMOS, $V_T = 1.5$ V and K = 0.25 mA/V².

First note that $v_{GS} = v_{DS}$, so the NMOS *must* be in saturation. ($v_{DS} > v_{GS} - V_T$) No guess needed.

Since $V_{DD} > V_T \rightarrow$ the NMOS is on.

And $i_S = i_D$ (always for a FET) and don't forget that $i_G = 0$.

$$i_D = K \left(v_{GS} - V_T \right)^2 \qquad v_{GS} = V_{DD} - i_S R_S$$

$$i_D = K \left(V_{DD} - i_D R_S - V_T \right)^2$$

$$= K \left[R_{S}^{2} i_{D}^{2} - 2 \left(V_{DD} - V_{T} \right) R_{S} i_{D} + \left(V_{DD} - V_{T} \right)^{2} \right]$$

(Same basic form as Example 2.)

$$i_D^2 - \left[\frac{1}{KR_S^2} + 2\left(\frac{V_{DD} - V_T}{R_S}\right)\right]i_D + \left[\frac{V_{DD} - V_T}{R_S}\right]^2 = 0$$

$$i_D^2 - \left[\frac{1}{KR_S^2} + 2\left(\frac{V_{DD} - V_T}{R_S}\right)\right]i_D + \left[\frac{V_{DD} - V_T}{R_S}\right]^2 = 0$$

Plug in the numbers:

$$i_D^2 - [6.74 \text{ mA}] i_D + [8.73 \text{ mA}^2] = 0$$

Use the quadratic equation:

$$i_D = 4.99$$
 mA or $i_D = 1.75$ mA.

Which is right? Check the v_{GS} for both.

If $i_D = 4.99 \text{ mA}$, $v_{GS} = V_{DD} - i_D R_S = 8 \text{ V} - 10.98 \text{ V} = -2.98 \text{ V}$. Nope – the NMOS would not be on in that case. This root is bogus.

If $i_D = 1.75 \text{ mA}$, $v_{GS} = V_{DD} - i_D R_S = 8 \text{ V} - 3.85 \text{ V} = 4.15 \text{ V}$. OK, this works.

Finally, $v_{DS} = v_{GS} = 4.15$ V.

For the circuit shown, use the the NMOS equations to find i_D and v_{DS} .

For the NMOS, $V_T = 1.5$ V and K = 0.5 mA/V².

 $v_{GS} = V_G = 10 \text{ V} \rightarrow \text{the NMOS is on.}$

This looks like a lot like the first example. So 10 V start by assuming that the NMOS is in saturation.

$$i_D = K (v_{GS} - V_T)^2 = (0.5 \text{mA}/\text{V}^2) [10\text{V} - 1.5\text{V}]^2 = 36.125 \text{mA}$$

 V_{G}

$$v_{DS} = V_{DD} - i_D R_D = 10 V - (36.125 mA) (2 k\Omega) = -62.25 V$$

Red Alert! There is a serious problem here. Apparently the NMOS is **not** in saturation. So try the ohmic equation.

$$i_D = K \left[2 \left(v_{GS} - V_T \right) v_{DS} - v_{DS}^2 \right]$$

Unfortunately, we don't know either i_D or v_{DS} . So we need a second equation.

 $V_{DD} = 10 \text{ V}$

 v_{DS}

$$i_D = K \left[2 \left(v_{GS} - V_T \right) v_{DS} - v_{DS}^2 \right]$$

Use Ohm's law on the drain resistor to get a second equation:

$$i_{RD} = \frac{V_{DD} - v_{DS}}{R_D} = i_D$$

We can use these to solve for either i_D or v_{DS} . Setting the two equal and solving for v_{DS} is probably slightly easier.

$$\frac{V_{DD} - v_{DS}}{R_D} = K \left[2 \left(v_{GS} - V_T \right) v_{DS} - v_{DS}^2 \right]$$

Re-arrange: $v_{DS}^2 - \left[2 \left(v_{GS} - V_T \right) + \frac{1}{KR_D} \right] v_{DS} + \frac{V_{DD}}{KR_D} = 0$

Plug in numbers:
$$v_{DS}^2 - [18 \text{ V}] v_{DS} + 10 \text{ V}^2 = 0$$

Solve: $v_{DS} = 0.574 \text{ V}$ or $v_{DS} = 17.43 \text{ V}$.

EE 230

It should be obvious that the larger value is way too big – it's bigger than V_{DD} . Also, since the NMOS is in ohmic, we expect v_{DS} to be small. So we choose the smaller value as correct.

Lastly:
$$i_D = \frac{V_{DD} - v_{DS}}{R_D} = \frac{10 \text{ V} - 0.573 \text{ V}}{2k\Omega} = 4.71 \text{ mA}$$

NMOS examples - 7

For the circuit shown, use the the NMOS equations to find i_D and v_{DS} .

For the NMOS,
$$V_T = 1 \text{ V}$$
 and $K = 0.25 \text{ mA/V}^2$.

First note that since $i_G = 0$, R_1 and R_2 form a simple voltage divider, and

$$V_G = \frac{R_2}{R_2 + R_1} V_{DD} = 4 \, V_{DD}$$

Since $V_G > V_T$, the NMOS should be on. Guess that it is in saturation.

$$v_{GS} = V_G - v_{RS} = V_G - i_D R_S$$

$$i_D = K (v_{GS} - V_T)^2 = K (V_G - i_D R_S - V_T)^2$$

This is exactly the same as example 2.

$$i_D^2 - \left[\frac{1}{KR_S^2} + 2\left(\frac{V_G - V_T}{R_S}\right)\right]i_D + \left[\frac{V_G - V_T}{R_S}\right]^2 = 0$$

 v_{DS}

 $V_{DD} = 8 \text{ V}$

+

v_{GS}

 R_1

 V_{G}

R

150 kΩ

150 kC

$$i_D^2 - \left[\frac{1}{KR_S^2} + 2\left(\frac{V_G - V_T}{R_S}\right)\right]i_D + \left[\frac{V_G - V_T}{R_S}\right]^2 = 0$$

Plug in the numbers:

$$i_D^2 - [10 \text{ mA}] i_D + 9 \text{ mA}^2 = 0$$

Use the quadratic equation:

 $i_D = 9$ mA or $i_D = 1$ mA.

Which is right? Check the v_{GS} for both.

If
$$i_D = 9 \text{ mA}$$
, $v_{GS} = V_G - i_D R_S = 4 \text{ V} - 8.24 \text{ V} = -5 \text{ V}$, and
if $i_D = 1 \text{ mA}$, $v_{GS} = V_G - i_D R_S = 4 \text{ V} - 1 \text{ V} = 3 \text{ V}$.

Clearly, $i_D = 1$ mA is the only answer that makes sense.

Finally, $v_{GS} - V_T = 2 \text{ V}$, and $v_{DS} = V_{DD} - i_D R_D - i_D R_S = 4.8 \text{ V}$.

 $v_{DS} > v_{GS} - V_T \rightarrow$ saturation confirmed.

Same as example 5, but values for R_2 is increased to 680 k Ω . It is the same NMOS: $V_T = 1$ V and K = 0.25 mA/V².

Following the same procedure as Example 5, we obtain $V_G = 6.55$ V. Guessing saturation and performing the same calculation to find i_D ,

 $i_D = 2.44$ mA or $i_D = 12.7$ mA.

Again, the larger of these is clearly too big to make any sense. Checking the smaller value for consistency with saturation:

$$v_{GS} - V_T = V_G - i_D R_S - V_T = 3.11 \text{ V}$$
, and

$$v_{DS} = V_{DD} - i_D R_D - i_D R_S = 0.19 \text{ V}.$$

Oops!! $v_{DS} < v_{GS} - V_T \rightarrow$ This is not in saturation!

So start over, assuming ohmic operation:

$$i_{D} = K \left[2 \left(v_{GS} - V_{T} \right) v_{DS} - v_{DS}^{2} \right]$$

$$v_{GS} - V_{T} = V_{G} - i_{D}R_{S} - V_{T}$$

$$v_{DS} = V_{DD} - i_{D}R_{D} - i_{D}R_{S}$$

This is gonna be messy...

$$\frac{i_D}{K} = 2\left[V_G - i_D R_S - V_T\right] \left[V_{DD} - i_D \left(R_D + R_S\right)\right] - \left[V_{DD} - i_D \left(R_D + R_S\right)\right]^2$$

+

After a whole lotta algebra...

$$i_D^2 - \left[\frac{1}{K\left(R_S^2 - R_D^2\right)} + \frac{2R_S V_{DD}}{\left(R_S^2 - R_D^2\right)} + \frac{2\left(V_G - V_t\right)}{\left(R_S - R_D\right)} - \frac{2V_{DD}}{\left(R_S - R_D\right)}\right]i_D$$

(Ouch! That one hurt...)

$$\left[\frac{2(V_G - V_T)V_{DD} - V_{DD}^2}{(R_S^2 - R_D^2)}\right] = 0$$

Plug in the numbers: $i_D^2 + [1.12 \text{ mA}] i_D - 6.45 \text{ mA}^2 = 0$

and the two roots are: $i_D = 2.04$ mA and $i_D = -3.16$ mA.

 $v_{DS} = 8 \text{ V} - (2.04 \text{ mA})(2.2 \text{ k}\Omega + 1 \text{ k}\Omega) = 1.47 \text{ V}$

Definitely ohmic.

Design the circuit at right (by choosing *K* for the NMOS and the value of R_S) so that $i_D = 1$ mA and $v_{DS} = 2.5$ V. The NMOS has $V_T = 1$ V.

By writing a loop equation around the drainsource loop, we see that $v_{RS} = V_{DD} - v_{DS} =$ 2.5 V. And so $R_S = 2.5$ V / 1 mA = 2.5 k Ω .

Now writing a loop equation around the gatesource loop, we see that $v_{GS} = V_G - v_{RS} = 1.5$ V. This value of v_{GS} means that the NMOS must be operating in saturation.

Then, since in saturation $i_D = K(v_{GS} - V_T)^2$,

$$K = \frac{i_D}{(v_{GS} - V_T)^2} = \frac{1 \text{ mA}}{(1.5 \text{ V} - 1 \text{ V})^2} = 4\frac{\text{mA}}{\text{V}^2}$$

Design the circuit at right (by choosing *K* for the NMOS and the value of R_D) so that $i_D = 10$ mA and $v_{DS} = 0.2$ V. The NMOS has $V_T = 1$ V. How much power is being dissipated in the resistor and the NMOS?

 $V_{DD} = 10 \text{ V}$ $R_{D} \neq i_{D}$ $R_{D} \neq v_{DS}$ $+ v_{GS} -$

If $v_{DS} = 0.2 \text{ V}$, then $v_{RD} = 9.8 \text{ V}$. For a current of 10 mA, $R_D = v_{RD} / i_D = 9.8 \text{ V} / 10 \text{mA} = 0.98 \text{ k}\Omega$.

With $v_{GS} = 5$ V and $v_{DS} = 0.2$ V, the NMOS must be working in the ohmic region. For ohmic operation:

$$i_D = K \left[2 \left(v_{GS} - V_T \right) v_{DS} - v_{DS}^2 \right]$$

$$K = \frac{i_D}{\left[2\left(v_{GS} - V_T\right)v_{DS} - v_{DS}^2\right]} = \frac{10 \text{ mA}}{2\left(5 \text{ V} - 1 \text{ V}\right)\left(0.2 \text{ V}\right) - \left(0.2 \text{ V}\right)^2} = 6.41 \frac{\text{mA}}{\text{V}^2}$$

 $P_{RD} = (9.8 \text{ V}) (10 \text{ mA}) = 98 \text{ mW}$ $P_{NMOS} = (0.2 \text{ V}) (10 \text{ mA}) = 2 \text{ mW}$