NMOS examples

For the circuit shown, use the the NMOS equations to find i_{D} and $v_{D S}$.

For the NMOS, $V_{T}=1.5 \mathrm{~V}$ and $K=0.5 \mathrm{~mA} / \mathrm{V}^{2}$.

$$
v_{G S}=V_{G}=4 \mathrm{~V} \rightarrow \text { the } \mathrm{NMOS} \text { is on. }
$$

Assume that the transistor is in saturation.
$V_{D D}=10 \mathrm{~V}$

$$
\begin{aligned}
& i_{D}=K\left(v_{G S}-V_{T}\right)^{2}=\left(0.5 \mathrm{~mA} / \mathrm{V}^{2}\right)[4 \mathrm{~V}-1.5 \mathrm{~V}]^{2}=3.125 \mathrm{~mA} \\
& v_{D S}=V_{D D}-i_{D} R_{D}=10 \mathrm{~V}-(3.125 \mathrm{~mA})(2 \mathrm{k} \Omega)=3.75 \mathrm{~V} \\
& v_{G S}-V_{T}=4 \mathrm{~V}-1.5 \mathrm{~V}=2.5 \mathrm{~V} \\
& v_{D S}>v_{G S}-V_{T} \rightarrow \text { saturation confirmed. Q.E.D. }
\end{aligned}
$$

Example 2

For the circuit shown, use the the NMOS equations to find i_{D} and $v_{D S}$.
For the NMOS, $V_{T}=1.0 \mathrm{~V}$ and $K=0.5 \mathrm{~mA} \mathrm{~V}^{2}$.
Since $V_{G}>V_{T} \rightarrow$ the NMOS is on.
Guess that the transistor is in saturation.

$$
\begin{aligned}
i_{D} & =K\left(v_{G S}-V_{T}\right)^{2} \\
v_{G S} & =V_{G}-i_{S} R_{S}\left(\text { and } i_{S}=i_{D}, \text { as always for a FET }\right) \\
i_{D} & =K\left(V_{G}-i_{D} R_{S}-V_{T}\right)^{2} \\
& =K\left[R_{S}^{2} i_{D}^{2}-2\left(V_{G}-V_{T}\right) R_{S} i_{D}+\left(V_{G}-V_{T}\right)^{2}\right]
\end{aligned}
$$

Re-arranging:

$$
i_{D}^{2}-\left[\frac{1}{K R_{S}^{2}}+2\left(\frac{V_{G}-V_{T}}{R_{S}}\right)\right] i_{D}+\left[\frac{V_{G}-V_{T}}{R_{S}}\right]^{2}=0
$$

$$
i_{D}^{2}-\left[\frac{1}{K R_{S}^{2}}+2\left(\frac{V_{G}-V_{T}}{R_{S}}\right)\right] i_{D}+\left[\frac{V_{G}-V_{T}}{R_{S}}\right]^{2}=0
$$

Plug in the numbers:

$$
i_{D}^{2}-[10 \mathrm{~mA}] i_{D}+\left[9 \mathrm{~mA}^{2}\right]=0 \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Use the quadratic equation:

$$
i_{D}=9 \mathrm{~mA} \text { or } i_{D}=1 \mathrm{~mA} .
$$

$$
\begin{aligned}
& \text { or, if } a=1 \\
& x=-\frac{b}{2} \pm \sqrt{\left(\frac{b}{2}\right)^{2}-c}
\end{aligned}
$$

Which is right? Check the $v_{G S}$ for both.
If $i_{D}=9 \mathrm{~mA}, v_{G S}=V_{G}-i_{D} R_{S}=4 \mathrm{~V}-9 \mathrm{~V}=-5 \mathrm{~V}$. No way! The NMOS would not be on in that case. This root cannot be correct.

If $i_{D}=1 \mathrm{~mA}, v_{G S}=V_{G}-i_{D} R_{S}=4 \mathrm{~V}-1 \mathrm{~V}=3 \mathrm{~V}$. OK , this is consistent.
Finally, $v_{G S}-V_{T}=V_{G}-i_{D} R_{S}-V_{T}=2 \mathrm{~V}$, and $v_{D S}=V_{D D}-i_{D} R_{D}-i_{D} R_{S}=7 \mathrm{~V}$.

$$
v_{D S}>v_{G S}-V_{T} \rightarrow \text { saturation confirmed. }
$$

Example 3

For the circuit shown, use the the NMOS equations to find i_{D} and $v_{D S}$.

For the NMOS, $V_{T}=1.5 \mathrm{~V}$ and $K=0.25 \mathrm{~mA} / \mathrm{V}^{2}$.
First note that $v_{G S}=v_{D S}$, so the NMOS must be in saturation. $\left(v_{D S}>v_{G S}-V_{T}\right)$ No guess needed. Since $V_{D D}>V_{T} \rightarrow$ the NMOS is on.

And $i_{S}=i_{D}$ (always for a FET) and don't forget that $i_{G}=0$.

$$
\begin{aligned}
i_{D} & =K\left(v_{G S}-V_{T}\right)^{2} \quad v_{G S}=V_{D D}-i_{S} R_{S} \\
i_{D} & =K\left(V_{D D}-i_{D} R_{S}-V_{T}\right)^{2} \\
& =K\left[R_{S}^{2} i_{D}^{2}-2\left(V_{D D}-V_{T}\right) R_{S} i_{D}+\left(V_{D D}-V_{T}\right)^{2}\right]
\end{aligned}
$$

(Same basic form as Example 2.)

$$
i_{D}^{2}-\left[\frac{1}{K R_{S}^{2}}+2\left(\frac{V_{D D}-V_{T}}{R_{S}}\right)\right] i_{D}+\left[\frac{V_{D D}-V_{T}}{R_{S}}\right]^{2}=0
$$

$$
i_{D}^{2}-\left[\frac{1}{K R_{S}^{2}}+2\left(\frac{V_{D D}-V_{T}}{R_{S}}\right)\right] i_{D}+\left[\frac{V_{D D}-V_{T}}{R_{S}}\right]^{2}=0
$$

Plug in the numbers:

$$
i_{D}^{2}-[6.74 \mathrm{~mA}] i_{D}+\left[8.73 \mathrm{~mA}^{2}\right]=0
$$

Use the quadratic equation:

$$
i_{D}=4.99 \mathrm{~mA} \text { or } i_{D}=1.75 \mathrm{~mA} .
$$

Which is right? Check the $v_{G S}$ for both.
If $i_{D}=4.99 \mathrm{~mA}, v_{G S}=V_{D D}-i_{D} R_{S}=8 \mathrm{~V}-10.98 \mathrm{~V}=-2.98 \mathrm{~V}$. Nope - the NMOS would not be on in that case. This root is bogus.

If $i_{D}=1.75 \mathrm{~mA}, v_{G S}=V_{D D}-i_{D} R_{S}=8 \mathrm{~V}-3.85 \mathrm{~V}=4.15 \mathrm{~V}$. OK, this works.

Finally, $v_{D S}=v_{G S}=4.15 \mathrm{~V}$.

Example 4

For the circuit shown, use the the NMOS equations to find i_{D} and $v_{D S}$.

For the NMOS, $V_{T}=1.5 \mathrm{~V}$ and $K=0.5 \mathrm{~mA} / \mathrm{V}^{2}$.
$v_{G S}=V_{G}=10 \mathrm{~V} \rightarrow$ the NMOS is on.
This looks like a lot like the first example. So start by assuming that the NMOS is in saturation.

$$
\begin{aligned}
& i_{D}=K\left(v_{G S}-V_{T}\right)^{2}=\left(0.5 \mathrm{~mA} / \mathrm{V}^{2}\right)[10 \mathrm{~V}-1.5 \mathrm{~V}]^{2}=36.125 \mathrm{~mA} \\
& v_{D S}=V_{D D}-i_{D} R_{D}=10 \mathrm{~V}-(36.125 \mathrm{~mA})(2 \mathrm{k} \Omega)=-62.25 \mathrm{~V}
\end{aligned}
$$

Red Alert! There is a serious problem here. Apparently the NMOS is not in saturation. So try the ohmic equation.

$$
i_{D}=K\left[2\left(v_{G S}-V_{T}\right) v_{D S}-v_{D S}^{2}\right]
$$

Unfortunately, we don't know either i_{D} or $v_{D S}$. So we need a second equation.

$$
i_{D}=K\left[2\left(v_{G S}-V_{T}\right) v_{D S}-v_{D S}^{2}\right]
$$

Use Ohm's law on the drain resistor to get a second equation:

$$
i_{R D}=\frac{V_{D D}-v_{D S}}{R_{D}}=i_{D}
$$

We can use these to solve for either i_{D} or $v_{D S}$. Setting the two equal and solving for $v_{D S}$ is probably slightly easier.

$$
\frac{V_{D D}-v_{D S}}{R_{D}}=K\left[2\left(v_{G S}-V_{T}\right) v_{D S}-v_{D S}^{2}\right]
$$

Re-arrange: $\quad v_{D S}^{2}-\left[2\left(v_{G S}-V_{T}\right)+\frac{1}{K R_{D}}\right] v_{D S}+\frac{V_{D D}}{K R_{D}}=0$
Plug in numbers: $v_{D S}^{2}-[18 \mathrm{~V}] v_{D S}+10 \mathrm{~V}^{2}=0$
Solve: $v_{D S}=0.574 \mathrm{~V}$ or $v_{D S}=17.43 \mathrm{~V}$.
It should be obvious that the larger value is way too big - it's bigger than $V_{D D}$. Also, since the NMOS is in ohmic, we expect $v_{D S}$ to be small. So we choose the smaller value as correct.

$$
\text { Lastly: } \quad i_{D}=\frac{V_{D D}-v_{D S}}{R_{D}}=\frac{10 \mathrm{~V}-0.573 \mathrm{~V}}{2 \mathrm{k} \Omega}=4.71 \mathrm{~mA}
$$

Example 5

For the circuit shown, use the the NMOS equations to find i_{D} and $v_{D S}$.

For the NMOS, $V_{T}=1 \mathrm{~V}$ and $K=0.25 \mathrm{~mA} / \mathrm{V}^{2}$.
First note that since $i_{G}=0, R_{1}$ and R_{2} form a simple voltage divider, and

$$
V_{G}=\frac{R_{2}}{R_{2}+R_{1}} V_{D D}=4 \mathrm{~V}
$$

Since $V_{G}>V_{T}$, the NMOS should be on. Guess that it is in saturation.

$$
\begin{aligned}
& v_{G S}=V_{G}-v_{R S}=V_{G}-i_{D} R_{S} \\
& i_{D}=K\left(v_{G S}-V_{T}\right)^{2}=K\left(V_{G}-i_{D} R_{S}-V_{T}\right)^{2}
\end{aligned}
$$

This is exactly the same as example 2.

$$
i_{D}^{2}-\left[\frac{1}{K R_{S}^{2}}+2\left(\frac{V_{G}-V_{T}}{R_{S}}\right)\right] i_{D}+\left[\frac{V_{G}-V_{T}}{R_{S}}\right]^{2}=0
$$

$$
i_{D}^{2}-\left[\frac{1}{K R_{S}^{2}}+2\left(\frac{V_{G}-V_{T}}{R_{S}}\right)\right] i_{D}+\left[\frac{V_{G}-V_{T}}{R_{S}}\right]^{2}=0
$$

Plug in the numbers:

$$
i_{D}^{2}-[10 \mathrm{~mA}] i_{D}+9 \mathrm{~mA}^{2}=0
$$

Use the quadratic equation:

$$
i_{D}=9 \mathrm{~mA} \text { or } i_{D}=1 \mathrm{~mA} .
$$

Which is right? Check the $v_{G S}$ for both.
If $i_{D}=9 \mathrm{~mA}, v_{G S}=V_{G}-i_{D} R_{S}=4 \mathrm{~V}-8.24 \mathrm{~V}=-5 \mathrm{~V}$, and if $i_{D}=1 \mathrm{~mA}, v_{G S}=V_{G}-i_{D} R_{S}=4 \mathrm{~V}-1 \mathrm{~V}=3 \mathrm{~V}$.

Clearly, $i_{D}=1 \mathrm{~mA}$ is the only answer that makes sense.
Finally, $v_{G S}-V_{T}=2 \mathrm{~V}$, and $v_{D S}=V_{D D}-i_{D} R_{D}-i_{D} R_{S}=4.8 \mathrm{~V}$.

$$
v_{D S}>v_{G S}-V_{T} \rightarrow \text { saturation confirmed. }
$$

Example 6

Same as example 5, but values for R_{2} is increased to $680 \mathrm{k} \Omega$. It is the same NMOS: $V_{T}=1 \mathrm{~V}$ and $K=$ $0.25 \mathrm{~mA} / \mathrm{V}^{2}$.

Following the same procedure as Example 5, we obtain $V_{G}=6.55 \mathrm{~V}$. Guessing saturation and performing the same calculation to find i_{D},

$$
i_{D}=2.44 \mathrm{~mA} \text { or } i_{D}=12.7 \mathrm{~mA} .
$$

Again, the larger of these is clearly too big to make any sense. Checking the smaller value for
 consistency with saturation:

$$
\begin{aligned}
& v_{G S}-V_{T}=V_{G}-i_{D} R_{S}-V_{T}=3.11 \mathrm{~V}, \text { and } \\
& v_{D S}=V_{D D}-i_{D} R_{D}-i_{D} R_{S}=0.19 \mathrm{~V}
\end{aligned}
$$

Oops!! $v_{D S}<v_{G S}-V_{T} \rightarrow$ This is not in saturation!

So start over, assuming ohmic operation:

$$
i_{D}=K\left[2\left(v_{G S}-V_{T}\right) v_{D S}-v_{D S}^{2}\right]
$$

$$
\begin{aligned}
& v_{G S}-V_{T}=V_{G}-i_{D} R_{S}-V_{T} \\
& v_{D S}=V_{D D}-i_{D} R_{D}-i_{D} R_{S}
\end{aligned}
$$

This is gonna be messy...

$$
\frac{i_{D}}{K}=2\left[V_{G}-i_{D} R_{S}-V_{T}\right]\left[V_{D D}-i_{D}\left(R_{D}+R_{S}\right)\right]-\left[V_{D D}-i_{D}\left(R_{D}+R_{S}\right)\right]^{2}
$$

After a whole lotta algebra...
$i_{D}^{2}-\left[\frac{1}{K\left(R_{S}^{2}-R_{D}^{2}\right)}+\frac{2 R_{S} V_{D D}}{\left(R_{S}^{2}-R_{D}^{2}\right)}+\frac{2\left(V_{G}-V_{t}\right)}{\left(R_{S}-R_{D}\right)}-\frac{2 V_{D D}}{\left(R_{S}-R_{D}\right)}\right] i_{D}$
(Ouch! That one hurt...)

$$
+\left[\frac{2\left(V_{G}-V_{T}\right) V_{D D}-V_{D D}^{2}}{\left(R_{S}^{2}-R_{D}^{2}\right)}\right]=0
$$

Plug in the numbers: $i_{D}^{2}+[1.12 \mathrm{~mA}] i_{D}-6.45 \mathrm{~mA}^{2}=0$
and the two roots are: $i_{D}=2.04 \mathrm{~mA}$ and $i_{D}=-3.16 \mathrm{~mA}$.
Definitely ohmic.

$$
v_{D S}=8 \mathrm{~V}-(2.04 \mathrm{~mA})(2.2 \mathrm{k} \Omega+1 \mathrm{k} \Omega)=1.47 \mathrm{~V}
$$

Example 7

Design the circuit at right (by choosing K for the

By writing a loop equation around the drainsource loop, we see that $v_{R S}=V_{D D}-v_{D S}=$ 2.5 V . And so $R_{S}=2.5 \mathrm{~V} / 1 \mathrm{~mA}=2.5 \mathrm{k} \Omega$.

Now writing a loop equation around the gatesource loop, we see that $v_{G S}=V_{G}-v_{R S}=1.5 \mathrm{~V}$. This value of $v_{G S}$ means that the NMOS must be operating in saturation.

Then, since in saturation $i_{D}=K\left(v_{G S}-V_{T}\right)^{2}$,

$$
K=\frac{i_{D}}{\left(v_{G S}-V_{T}\right)^{2}}=\frac{1 \mathrm{~mA}}{(1.5 \mathrm{~V}-1 \mathrm{~V})^{2}}=4 \frac{\mathrm{~mA}}{\mathrm{~V}^{2}}
$$

Example 8

Design the circuit at right (by choosing K for the NMOS and the value of R_{D}) so that $i_{D}=10 \mathrm{~mA}$ and $v_{D S}=0.2 \mathrm{~V}$. The NMOS has $V_{T}=1 \mathrm{~V}$. How much power is being dissipated in the resistor and the NMOS?

If $v_{D S}=0.2 \mathrm{~V}$, then $v_{R D}=9.8 \mathrm{~V}$. For a current of 10 $\mathrm{mA}, R_{D}=v_{R D} / i_{D}=9.8 \mathrm{~V} / 10 \mathrm{~mA}=0.98 \mathrm{k} \Omega$.

With $v_{G S}=5 \mathrm{~V}$ and $v_{\mathrm{DS}}=0.2 \mathrm{~V}$, the NMOS must be working in the ohmic region. For ohmic operation:

$$
\begin{gathered}
i_{D}=K\left[2\left(v_{G S}-V_{T}\right) v_{D S}-v_{D S}^{2}\right] \\
K=\frac{i_{D}}{\left[2\left(v_{G S}-V_{T}\right) v_{D S}-v_{D S}^{2}\right]}=\frac{10 \mathrm{~mA}}{2(5 \mathrm{~V}-1 \mathrm{~V})(0.2 \mathrm{~V})-(0.2 \mathrm{~V})^{2}}=6.41 \frac{\mathrm{~mA}}{\mathrm{~V}^{2}} \\
P_{R D}=(9.8 \mathrm{~V})(10 \mathrm{~mA})=98 \mathrm{~mW} \quad P_{\text {NMOS }}=(0.2 \mathrm{~V})(10 \mathrm{~mA})=2 \mathrm{~mW}
\end{gathered}
$$

